2 research outputs found

    Novel Virtual Moving Sound-based Spatial Auditory Brain-Computer Interface Paradigm

    Full text link
    This paper reports on a study in which a novel virtual moving sound-based spatial auditory brain-computer interface (BCI) paradigm is developed. Classic auditory BCIs rely on spatially static stimuli, which are often boring and difficult to perceive when subjects have non-uniform spatial hearing perception characteristics. The concept of moving sound proposed and tested in the paper allows for the creation of a P300 oddball paradigm of necessary target and non-target auditory stimuli, which are more interesting and easier to distinguish. We present a report of our study of seven healthy subjects, which proves the concept of moving sound stimuli usability for a novel BCI. We compare online BCI classification results in static and moving sound paradigms yielding similar accuracy results. The subject preference reports suggest that the proposed moving sound protocol is more comfortable and easier to discriminate with the online BCI.Comment: 4 pages (in conference proceedings original version); 6 figures, accepted at 6th International IEEE EMBS Conference on Neural Engineering, November 6-8, 2013, Sheraton San Diego Hotel & Marina, San Diego, CA; paper ID 465; to be available at IEEE Xplore; IEEE Copyright 201

    Effect of an intraoperative periradicular application of platelet-rich fibrin (PRF) on residual post-surgical neuropathic pain after disc herniation surgery: study protocol for NeuroPRF, a randomized controlled trial

    No full text
    Abstract Background The prevalence of post-surgical lumbar neuropathic radiculopathy is approximately 30%. Poor response to the recommended treatments for neuropathic pain, namely antidepressants and/or gabapentinoids, requires the development of new techniques to prevent chronic pain. One such well-tolerated technique is the administration of autologous plasma enriched in platelets and fibrin (PRF). This approach is largely used in regenerative medicine owing to the anti-inflammatory and analgesic properties of PRF. It could also be an interesting adjuvant to surgery, as it reduces neurogenic inflammation and promotes nerve recovery, thereby reducing the incidence of residual postoperative chronic pain. The aim of the present study is to evaluate the benefit of periradicular intraoperative application of PRF on the residual postsurgical neuropathic pain after disc herniation surgery. Methods A randomized, prospective, interventional, controlled, single-blind study with evaluation by a blind outcome assessor will be performed in Strasbourg University Hospital. We will compare a control group undergoing conventional surgery to an experimental group undergoing surgery and periradicular administration of PRF (30 patients in each arm). The primary outcome is the intensity of postoperative neuropathic radicular pain, measured by a visual analog scale (VAS) at 6 months post-surgery. The secondary outcomes are the characteristics of neuropathic pain (NPSI), the quality of life (SF-12 and PGIC), the presence of anxiety/depression symptoms (HAD), and the consumption of analgesics. We will also carry out transcriptomic analysis of a panel of pro- and anti-inflammatory cytokines in blood samples, before surgery and at 6 months follow-up. These gene expression results will be correlated with clinical data, in particular, with the apparition of postoperative neuropathic pain. Discussion This study is the first randomized controlled trial to assess the efficacy of PRF in the prevention of neuropathic pain following surgery for herniated disc. This study addresses not only a clinical question but will also provide information on the physiopathological mechanisms of neuropathic pain. Trial registration This study is registered at ClinicalTrials.gov: NCT05196503 , February 24, 2022
    corecore